A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems
نویسنده
چکیده
This paper reports a new spectral collocation method for numerically solving two-dimensional biharmonic boundary-value problems. The construction of the Chebyshev approximations is based on integration rather than conventional differentiation. This use of integration allows: (i) the imposition of the governing equation at the whole set of grid points including the boundary points and (ii) the straightforward implementation of multiple boundary conditions. The performance of the proposed method is investigated by considering several biharmonic problems of first and second kinds; more accurate results and higher convergence rates are achieved than with conventional differential methods.
منابع مشابه
An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme
We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...
متن کاملRational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder
In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...
متن کاملA Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
We are concerned with linear and nonlinear multi-term fractional differential equations (FDEs). The shifted Chebyshev operationalmatrix (COM) of fractional derivatives is derived and used together with spectral methods for solving FDEs. Our approach was based on the shifted Chebyshev tau and collocation methods. The proposed algorithms are applied to solve two types of FDEs, linear and nonlinea...
متن کاملA rational spectral collocation method for solving a class of parameterized singular perturbation problems
A new kind of numerical method based on rational spectral collocation with the sinh transformation is presented for solving parameterized singularly perturbed two-point boundary value problems with one boundary layer. By means of the sinh transformation, the original Chebyshev points are mapped onto the transformed ones clustered near the singular points of the problem. The results from asympto...
متن کاملA numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems
In solving semilinear initial boundary value problems with prescribed non-periodic boundary conditions using implicit-explicit and implicit time stepping schemes, both the function and derivatives of the function may need to be computed accurately at each time step. To determine the best Chebyshev collocation method to do this, the accuracy of the real space Chebyshev differentiation, spectral ...
متن کامل